Хлороводород может быть как окислителем так и восстановителем

Содержание
  1. Окислительно-восстановительные реакции
  2. Окислители и восстановители
  3. Классификация окислительно-восстановительных реакций
  4. Основные правила составления окислительно-восстановительных реакций
  5. Общие закономерности протекания окислительно-восстановительных реакций
  6. Основные схемы окислительно-восстановительных реакций
  7. Схема восстановления перманганатов
  8. Схема восстановления хроматов/бихроматов
  9. Разложение нитратов
  10. Окислительные свойства азотной кислоты
  11. Взаимодействие металлов с серной кислотой
  12. Пероксид водорода
  13. Окислители и восстановители
  14. Хлороводород может быть как окислителем так и восстановителем
  15. Хлороводород может быть как окислителем так и восстановителем
  16. Окислители
  17. Восстановители
  18. Образец выполнения задания ОГЭ.
  19. Хлороводород может быть как окислителем так и восстановителем
  20. Соединения марганца
  21. Соли марганца (II)
  22. Оксид марганца (IV) MnO2
  23. Перманганат калия KMnO4
  24. Соединения хрома
  25. Соединения хрома (III)
  26. Хроматы и бихроматы

Окислительно-восстановительные реакции

Окислительно-восстановительные реакции — это химические реакции, сопровождающиеся изменением степени окисления у атомов реагирующих веществ. При этом некоторые частицы отдают электроны, а некоторые получают.

Окислители и восстановители

Окислители — это частицы (атомы, молекулы или ионы), которые принимают электроны в ходе химической реакции. При этом степень окисления окислителя понижается. Окислители при этом восстанавливаются.

Восстановители — это частицы (атомы, молекулы или ионы), которые отдают электроны в ходе химической реакции. При этом степень окисления восстановителя повышается. Восстановители при этом окисляются.

%D0%BE%D0%B2%D1%80

Химические вещества можно разделить на типичные окислители, типичные восстановители, и вещества, которые могут проявлять и окислительные, и восстановительные свойства. Некоторые вещества практически не проявляют окислительно-восстановительную активность.

К типичным окислителям относят:

Типичные восстановители – это, как правило:

Большинство остальных веществ может проявлять как окислительные, так и восстановительные свойства.

%D0%BE%D0%BA%D0%B8%D1%81%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D0%B8 %D0%B8 %D0%B2%D0%BE%D1%81%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%B8%D1%82%D0%B5%D0%BB%D0%B8

Типичные окислители и восстановители приведены в таблице.

%D0%BB%D0%B0%D0%B1 %D0%BE%D0%BA%D0%B8%D1%81%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D0%B8 %D0%B8 %D0%B2%D0%BE%D1%81%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%B8%D1%82%D0%B5%D0%BB%D0%B8

В лабораторной практике наиболее часто используются следующие окислители :

Классификация окислительно-восстановительных реакций

Окислительно-восстановительные реакции обычно разделяют на четыре типа: межмолекулярные, внутримолекулярные, реакции диспропорционирования (самоокисления-самовосстановления), и реакции контрдиспропорционирования.

C 0 + 4H N +5 O3(конц) = C +4 O2 ↑ + 4 N +4 O2 ↑+ 2H2O.

Внутримолекулярные реакции – это такие реакции, в которых разные элементы из одного реагента переходят в разные продукты, например:

Реакции диспропорционирования (самоокисления-самовосстановления) – это такие реакции, в которых окислитель и восстановитель – один и тот же элемент одного реагента, который при этом переходит в разные продукты:

3Br2 + 6 KOH → 5KBr + KBrO3 + 3 H2O,

Репропорционирование (конпропорционирование, контрдиспропорционирование ) – это реакции, в которых окислитель и восстановитель – это один и тот же элемент, который из разных реагентов переходит в один продукт. Реакция, обратная диспропорционированию.

%D0%BA%D0%BB%D0%B0%D1%81%D1%81%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%86%D0%B8%D1%8F %D0%BE%D0%B2%D1%80

Основные правила составления окислительно-восстановительных реакций

Окислительно-восстановительные реакции сопровождаются процессами окисления и восстановления:

Окисление — это процесс отдачи электронов восстановителем.

Восстановление — это процесс присоединения электронов окислителем.

В окислительно-восстановительных реакциях соблюдается электронный баланс: количество электронов, которые отдает восстановитель, равно количеству электронов, которые получает окислитель. Если баланс составлен неверно, составить сложные ОВР у вас не получится.

Используется несколько методов составления окислительно-восстановительных реакций (ОВР): метод электронного баланса, метод электронно-ионного баланса (метод полуреакций) и другие.

«Опознать» ОВР довольно легко — достаточно расставить степени окисления во всех соединениях и определить, что атомы меняют степень окисления:

Выписываем отдельно атомы элементов, меняющих степень окисления, в состоянии ДО реакции и ПОСЛЕ реакции.

Степень окисления меняют атомы марганца и серы:

Mn +7 + 1e = Mn +6

Марганец поглощает 1 электрон, сера отдает 2 электрона. При этом необходимо, чтобы соблюдался электронный баланс. Следовательно, необходимо удвоить число атомов марганца, а число атомов серы оставить без изменения. Балансовые коэффициенты указываем и перед реагентами, и перед продуктами!

Схема составления уравнений ОВР методом электронного баланса:

%D0%BC%D0%B5%D1%82%D0%BE%D0%B4 %D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE %D0%B1%D0%B0%D0%BB%D0%B0%D0%BD%D1%81%D0%B0

Внимание! В реакции может быть несколько окислителей или восстановителей. Баланс необходимо составить так, чтобы ОБЩЕЕ число отданных и полученных электронов было одинаковым.

Общие закономерности протекания окислительно-восстановительных реакций

Самый очевидный фактор, определяющий — среда раствора реакции — кислая, нейтральная или щелочная. Как правило (но не обязательно), вещество, определяющее среду, указано среди реагентов. Возможны такие варианты:

%D0%B2%D0%BB%D0%B8%D1%8F%D0%BD%D0%B8%D0%B5 %D1%81%D1%80%D0%B5%D0%B4%D1%8B

Среда протекания реакции позволяет определить состав и форму существования остальных продуктов ОВР. Основной принцип — продукты образуются такие, которые не взаимодействуют с реагентами!

Обратите внимание! Е сли среда раствора кислая, то среди продуктов реакции не могут присутствовать основания и основные оксиды, т.к. они взаимодействуют с кислотой. И, наоборот, в щелочной среде исключено образование кислоты и кислотного оксида. Это одна из наиболее частых, и наиболее грубых ошибок.

При увеличении температуры большинство ОВР, как правило, проходят более интенсивно и более глубоко.

Рассмотрим наиболее типичные лабораторные окислители.

Основные схемы окислительно-восстановительных реакций

Схема восстановления перманганатов

В составе перманганатов есть мощный окислитель — марганец в степени окисления +7. Соли марганца +7 окрашивают раствор в фиолетовый цвет.

%D0%BF%D0%B5%D1%80%D0%BC%D0%B0%D0%BD%D0%B3%D0%B0%D0%BD%D0%B0%D1%82

Перманганаты, в зависимости от среды реакционного раствора, восстанавливаются по-разному.

%D0%BF%D0%B5%D1%80%D0%BC%D0%B0%D0%BD%D0%B3%D0%B0%D0%BD%D0%B0%D1%82 %D0%BA%D0%B0%D0%BB%D0%B8%D1%8F 1

3 K2S + 2 KMnO4 + 4 H2O = 2 MnO2↓ + 3 S↓ + 8 KOH,

Распространенной ошибкой в этой реакции является указание на взаимодействие серы и щелочи в продуктах реакции. Однако, сера взаимодействует с щелочью в довольно жестких условиях (повышенная температура), что не соответствует условиям этой реакции. При обычных условиях правильно будет указывать именно молекулярную серу и щелочь отдельно, а не продукты их взаимодействия.

При составлении этой реакции также возникают трудности. Дело в том, что в данном случае написание молекулы среды (КОН или другая щелочь) в реагентах не требуется для уравнивания реакции. Щелочь принимает участие в реакции, и определяет продукт восстановления перманганата калия, но реагенты и продукты уравниваются и без ее участия. Этот, казалось бы, парадокс легко разрешим, если вспомнить, что химическая реакция — это всего лишь условная запись, которая не указывает на каждый происходящий процесс, а всего лишь является отображением суммы всех процессов. Как определить это самостоятельно? Если действовать по классической схеме — баланс-балансовые коэффициенты-уравнивание металла, то вы увидите, что металлы уравниваются балансовыми коэффициентами, и наличие щелочи в левой части уравнения реакции будет лишним.

Перманганаты окисляют:

Читайте также:  Цвет масла на щупе как должно быть

KMnO4 + неМе (низшая с.о.) = неМе 0 + другие продукты

KMnO4 + неМе (промежуточная с.о.) = неМе(высшая с.о.) + др. продукты

KMnO4 + Ме 0 = Ме (стабильная с.о.) + др. продукты

Схема восстановления хроматов/бихроматов

%D0%9E%D0%92%D0%A0 %D1%81 %D1%85%D1%80%D0%BE%D0%BC%D0%BE%D0%BC

Соединения хрома VI окисляют:

Хромат/бихромат + неМе (отрицательная с.о.) = неМе 0 + другие продукты

Хромат/бихромат + неМе (промежуточная положительная с.о.) = неМе(высшая с.о.) + др. продукты

Хромат/бихромат + Ме 0 = Ме (стабильная с.о.) + др. продукты

Хромат/бихромат + P, As (отрицательная с.о.) = P, As +5 + другие продукты

Разложение нитратов

Например:

Активные металлы в природе встречаются в виде солей (KCl, NaCl).

Металлы средней активности чаще всего в природе встречаются в виде оксидов (Fe2O3, Al2O3 и др.).

Неактивные металлы в природе встречаются в виде простых веществ.

Некоторые исключения!

Разложение нитрата аммония :

При нагревании нитрат аммония разлагается. При температуре до 270 о С образуется оксид азота (I) («веселящий газ») и вода:

Результирующая степень окиcления азота — среднее арифметическое степени окисления атомов азота в исходной молекуле.

При более высокой температуре оксид азота (I) разлагается на простые вещества — азот и кислород :

При разложении нитрита аммония NH4NO2 также происходит контрдиспропорционирование.

Термическое разложение нитрата марганца (II) сопровождается окислением металла:

Нитрат железа (II) при низких температурах разлагается до оксида железа (II), при нагревании железо окисляется до степени окисления +3:

Нитрат никеля (II) разлагается до нитрита при нагревании до 150 о С под вакуумом и до оксида никеля при более высоких температурах (разложения нитрата никеля в ЕГЭ по химии не должно быть, но это не точно)).

Окислительные свойства азотной кислоты

Это связано с тем, что в составе кислоты есть очень сильный окислитель — азот в степени окисления +5. При взаимодействии с восстановителями — металлами образуются различные продукты восстановления азота.

Азотная кислота + металл = соль металла + продукт восстановления азота + H2O

Некоторые закономерности позволят верно определять основной продукт восстановления металлами азотной кислоты в реакции:

пассивация металлов — это перевод поверхности металла в неактивное состояние за счет образования на поверхности металла тонких слоев инертных соединений, в данном случае преимущественно оксидов металлов, которые не реагируют с концентрированной азотной кислотой

Для приближенного определения продуктов восстановления азотной кислоты при взаимодействии с разными металлами я предлагаю воспользоваться принципом маятника. Основные факторы, смещающие положение маятника: концентрация кислоты и активность металла. Для упрощения используем 3 типа концентраций кислоты: концентрированная (больше 30%), разбавленная (30% или меньше), очень разбавленная (меньше 5%). Металлы по активности разделим на активные (до алюминия), средней активности (от алюминия до водорода) и неактивные (после водорода). Продукты восстановления азотной кислоты располагаем в порядке убывания степени окисления:

Чем активнее металл, тем больше мы смещаемся вправо. Чем больше концентрация или меньше степень разбавления кислоты, тем больше мы смещаемся влево.

Взаимодействие металлов с серной кислотой

Например :

Концентрированная серная кислота взаимодействует с металлами, стоящими в ряду напряжений как до, так и после водорода.

H2SO4 (конц) + металл = соль металла + продукт восстановления серы (SO2, S, H2S) + вода

Основные принципы взаимодействия концентрированной серной кислоты с металлами:

1. Концентрированная серная кислота пассивирует алюминий, хром, железо при комнатной температуре, либо на холоду;

2. Концентрированная серная кислота не взаимодействует с золотом, платиной и палладием ;

3. С неактивными металлами концентрированная серная кислота восстанавливается до оксида серы (IV).

Cu 0 + 2H2 S +6 O4(конц) = Cu +2 SO4 + S +4 O2 + 2H2O

4. При взаимодействии с активными металлами и цинком концентрированная серная кислота образует серу S либо сероводород H2S 2- (в зависимости от температуры, степени измельчения и активности металла).

Пероксид водорода

При взаимодействии с окислителями перекись окисляется до молекулярного кислорода (степень окисления 0): O2. Например :

Источник

Окислители и восстановители

Элементы, находящиеся в высшей степени окисления, могут только восстанавливаться, так как их атомы способны лишь принимать электроны: сера в СО = +6 (Н2SO4), азот +5 (HNO3 и нитраты), марганец +7 (перманганаты), хром +6 (хроматы и дихроматы), свинец +4 (PbO2) и др.

Читайте также:  Как долго человек может не есть и не пить

Вещества, содержащие элементы в промежуточных степенях окисления, обладают окислительно-восстановительной двойственностью. Такие вещества способны и принимать и отдавать электроны, в зависимости от партнера, с которым они взаимодействуют, и от условий проведения реакции.

Представим наиболее важные окислители и восстановители.

2.Среди кислородсодержащих кислот и их солей к наиболее важным окислителям относятся KMnO4, K2CrO4, K2Cr2O7, концентрированная H2SO4, НNО3 и нитраты, кислородсодержащие кислоты галогенов и их соли.

смещено вправо, то окислителем служит ион Cr2O7 2- :

Активные металлы (Mg, Zn и др.) восстанавливают концентрированную серную кислоту до свободной серы или сероводорода (иногда при восстановлении серной кислоты одновременно образуются в различных соотношениях H2S, S, SO2):

Азотная кислота проявляет окислительные свойства за счет азота в степени окисления +5, причем окислительная способность HNO3 усиливается с ростом ее концентрации. В концентрированном состоянии азотная кислота окисляет большинство элементов до их высшей степени окисления. Состав продуктов восстановления HNO3 зависит от активности восстановителя и концентрации кислоты: чем активнее восстановитель и более разбавлена кислота, тем глубже протекает восстановление азота:

Поэтому при взаимодействии концентрированной HNO3 с неметаллами или малоактивными металлами образуется диоксид азота:

При действии более разбавленной азотной кислоты на малоактивные металлы может выделиться оксид азота (II):

а в случае активных металлов – оксид азота(I) или свободный азот (в подобных случаях образуется смесь продуктов восстановления HNO3):

Сильно разбавленная азотная кислота при действии ее на активные металлы может восстанавливаться до иона аммония, образующего с кислотой нитрат аммония:

а в расплавах – до соответствующих нитритов:

KBrO + MnCl2 + 2KOH = KBr + MnO2 + 2KCl + H2O

3.Водород в степени окисления +1 выступает как окислитель преимущественно в растворах кислот (как правило, при взаимодействии с металлами, стоящими в ряду напряжений до водорода):

Однако при взаимодействии с сильными восстановителями в качестве окислителя может проявлять себя и водород, входящий в состав воды:

edugr4

2.В бескислородных кислотах (HCl, HBr, HI, H2S) и их солях носителями восстановительной функции являются анионы, которые, окисляясь, обычно образуют элементарные вещества. В ряду галогенид-ионов восстановительные свойства усиливаются от ионов хлора до ионов йода.

1. Йод в свободном состоянии, несмотря на более выраженную окислительную функцию, способен при взаимодействии с сильными окислителями играть роль восстановителя:

Кроме того, в щелочной среде для всех галогенов, исключая фтор, характерны реакции диспропорционирования:

Cl2 + 2KOH = KClO + KCl + H2O (на холоду)

3Cl2 + 6KOH = KClO3 + 5KCl + 3H2O (при нагревании)

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Хлороводород может быть как окислителем так и восстановителем

Установите соответствие между уравнением реакции и свойством, которое проявляет элемент хлор в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

A) 939b62b7254e3edb2ae258bb75c763d0

Б) 473d37b87b515b14baf9638a7681e7f3

В) 9db27c7e0b050fe59ec4ed370575042f

Г) 3bf1905fce17cda4322bbf1c18d444fb

1) является окислителем

2) является восстановителем

3) является и окислителем, и восстановителем

4) не изменяет степень окисления

УРАВНЕНИЕ РЕАКЦИИ СВОЙСТВО ХЛОРА

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Восстановитель — это элемент, отдающий электроны, т. е. он окисляется, а его степень окисления повышается.

Окислитель — это элемент, принимающий электроны, т. е. он восстанавливается, а его степень окисления уменьшается.

В реакции А) хлор является восстановителем, так как повышает свою степень окисления с «−1» до «0».

В реакции Б) хлор имеет степень окисления «−1» и не изменяет ее в ходе реакции.

В реакции В) хлор является и окислителем, и восстановителем, повышая свою степень окисления с «+5» до «+7» в a051e868aff47d27904fc17f15bc53cd, и понижая с «+5» до «−1» в 7571157155166965ef18e27b71b92d3b.

В реакции Г) хлор так же является и окислителем, и восстановителем, повышая свою степень окисления с «0» до «+1» в 1034ab2026a0cef530294a6353d1335e, и понижая с «0» до «−1» в 7571157155166965ef18e27b71b92d3b.

Источник

Хлороводород может быть как окислителем так и восстановителем

Ключевые слова конспекта: окислители, восстановители, окисление, восстановление.

Окисление – процесс отдачи электронов атомом, молекулой или ионом, степень окисления элемента повышается. Восстановление – процесс приёма электронов атомом, молекулой или ионом, степень окисления элемента понижается.

Окислители

Среди простых веществ окислительные свойства характерны для типичных неметаллов (F2, Cl2, Вг2, I2, O2, О3). Галогены, выступая в качестве окислителей, приобретают степень окисления –1, причём от фтора к йоду окислительные свойства ослабевают. Кислород, восстанавливаясь, приобретает степень окисления –22O или ОН – ).

Концентрированная серная кислота проявляет окислительные свойства за счёт серы в высшей степени окисления +6. Продуктами восстановления серы могут быть: SO2 (степень окисления серы +4), сера – простое вещество (степень окисления серы 0), сероводород (степень окисления серы –2).

Азотная кислота проявляет окислительные свойства за счёт азота в высшей степени окисления +5, причём окислительная способность HNO3 усиливается с ростом её концентрации. Состав продуктов восстановления азотной кислоты зависит от активности восстановителя, концентрации кислоты и температуры системы; чем активнее восстановитель и ниже концентрация кислоты, тем глубже происходит восстановление азота.

Кислородсодержащие кислоты галогенов (например, HClO, HClO3, НВrO3) и их соли, действуя в качестве окислителей, обычно восстанавливаются до степени окисления галогена –1 (в случае хлора и брома) и 0 (в случае иода). Например:
5КСlO3 + 6Р = 5КCl + 3Р2O5

Водород в степени окисления +1 выступает как окислитель преимущественно в растворах кислот (как правило, при взаимодействии с металлами, расположенными в раду напряжений до водорода):
Zn + H2SO4 (разб.) = ZnSO4 + Н2

При взаимодействии с сильными восстановителями в качестве окислителя может проявлять себя и водород, входящий в состав воды:
2O + 2Na = 2NaOH + Н2
Н2O + NaH = NaOH + Н2

Восстановители

Среди простых веществ к типичным восстановителям принадлежат активные металлы (щелочные и щёлочноземельные, алюминий, цинк, железо и др.), а также некоторые неметаллы, такие, как водород, углерод (в виде угля или кокса), фосфор, кремний. При этом в кислой среде металлы окисляются до положительно заряженных ионов.

Углерод чаще всего окисляется до монооксида СО или диоксида СO2; фосфор при действии сильных окислителей окисляется до ортофосфорной кислоты Н3РO4.

Образец выполнения задания ОГЭ.

Задание. Степень окисления азота в аммиаке и нитрате калия соответственно
1) –2 и +5
2) –3 и +5
3) +3 и +5
4) –4 и +3

Решение. Определим степени окисления элементов в аммиаке и нитрате натрия:

2019 07 04 20 17 23

Обратим внимание, что в аммиаке степень окисления азота – отрицательная, так как электроотрицательность азота выше, чем электроотрицательность водорода.

Правильный ответ: 2) –3 и +5.

Конспект урока по химии «Окислители и восстановители».

Темы, связанные с настоящим конспектом:

Источник

Хлороводород может быть как окислителем так и восстановителем

— это реакции, протекающие с изменением степеней окисления элементов. В ходе таких реакций происходит отдача (отрыв) электронов от одного элемента и присоединение их к другому.

Важно запомнить следующие термины: окислитель, восстановитель, окисление, восстановление

image

image

Восстановителями могут быть элементы в низших степенях окисления:

— простые вещества металлы,

Окислителями могут быть элементы в высших степенях окисления:

— KMnO4, K2CrO4, K2Cr2O7,

— H2SO4 (конц), HNO3 в любой концентрации, ее соли (KNO3, NaNO3), CO2

— простые вещества F2, О3

И окислителями и восстановителями могут быть элементы с промежуточной степенью окисления:

— простые вещества неметаллы H2, Cl2, Br2, I2, S, P, N2, C

— соединения металлов в промежуточной степени окисления (FeSO2, FeCl2, Cr2(SO4)3, MnO2, K2MnO4)

— H2O2, HClO3 и ее соли

Важно : нередко в реакциях один и тот же элемент может одновременно повысить и понизить степень окисления. Такие реакции называют реакциями диспрапорционирования

В ОВР часто в реакцию вступает третье вещество, которое не является ни окислителем, ни восстановителем. Такие вещества создают среду раствора. Она может быть кислой (за счет H2SO4), нейтральной (H2O), щелочной (KOH или NaOH). Среда раствора определяет по какому пути пойдет реакция

Соединения марганца

image

Марганец имеет несколько степеней окисления, наиболее характерными являются +2, +4, +6, +7.

В зависимости от с.о. соединения Mn будут проявлять различную окислительно-восстановительную способность:

Соли марганца (II)

image

Оксид марганца (IV) MnO2

КBr не может быть окислителем, т.к. Br находится в низшей с.о. (-1)

image

Перманганат калия KMnO4

image

В зависимости от среды, в реакциях будут образовываться различные продукты восстановления Mn:

— в кислой среде образуются соли Mn (+2), например MnCl2, MnSO4

— в нейтральной среде выпадает осадок MnO2 бурого цвета

— в щелочной среде образуется манганат K2MnO4? где Mn (+6)

FeSO4 + KMnO4 + H2SO4 = Fe2(SO4) + MnSO4 + K2SO4 + H2O

KMnO4 + KNO2 + H2O = KNO3 + MnO2 + KOH

Cr2(SO4)3 + KMnO4 + KOH = K2CrO4 + K2MnO4 + K2SO4 + H2O

Соединения хрома

image

Хром имеет несколько степеней окисления, наиболее характерны из которых +3 и +6.

Соединения Cr (+2) не стабильны, легко окисляются до +3, являясь сильнейшими восстановителями

Соединения хрома (III)

Цвета растворимых солей располагаются в лилово-зеленой гамме в зависимости от формулы и температуры. Гидроксид хрома (III) имеет грязно-зеленый оттенок.

При взаимодействии Cr (+3) с сильными окислителями, он окисляется до Cr (+6), т.е. до хромата или бихромата (зависит от кислотности среды):

— в кислой среде образуется оранжевый бихромат (К2Cr2О7)

image

Хроматы и бихроматы

Ядовиты. Редко вступают в реакции ионного обмена. Так, хроматы могут реагировать с солями бария и серебра образуя желтый осадок хромата бария и кроваво-красный осадок хромата серебра.

Источник

Adblock
detector