Про азот как если бы вы были агрономом о значении азота для почвы и растений

Сельское хозяйство | UniversityAgro.ru

Агрономия, земледелие, сельское хозяйство

Популярные статьи

Азот в жизни растений

Азот — химический элемент, инертный газ без цвета и запаха, открыт французским химиком Лавуазье во второй половине XVIII в., является основным компонентом атмосферного воздуха (78,08%). Название означает «нежизненный», так как не поддерживающий горение и дыхание. Однако, дальнейшие исследования показали огромную роль азота в жизни растений и всего органического мира.

Азот входит в состав:

Азотное питание растений

Все ферменты — белковые вещества, поэтому при недостаточном снабжении растений азотом синтех ферментов замедляется, что приводит к нарушениям в процессах биосинтеза, обмена веществ, в итоге, к снижению урожая.

Регулирование азотного питания растений, можно влиять на урожайность сельскохозяйственных культур с учетом других факторов жизни. Максимальный урожай достигается при достаточном обеспечении растений всеми условиями их роста. Академик Д.Н. Прянишников писал, что вся история земледелия в Западной Европе говорит о том, что главным условием, определяющим среднюю высоту урожаев в разные эпохи, была степень обеспеченности сельскохозяйственных растений азотом.

Оптимальное азотное питание способствует синтезу белковых веществ, растения образуют мощные стебли и листья с интенсивной зеленой окраской. Мощный ассимиляционный аппарат позволяет накапливать большее количество продуктов фотосинтеза, повышая урожайность и, как правило, его качество.

Одностороннее избыточное питание азотом, особенно во второй половине вегетационного периода, приводит к задержке созревания растений; образуется большая вегетативная масса, урожай репродуктивных органов но не успевает сформироваться.

Недостаток азота приводит к сильному замедлению роста растений. Прежде всего сказывается на развитии вегетативной массы: листья становятся мелкими, светло-зелеными, раньше желтеют, стебли тонкие, слабо ветвятся. Снижается формирование репродуктивных органов, урожай резко снижается. Азотное голодание у злаковых культур приводит к ослаблению кущения, уменьшается количество зерен в колосе, снижается белковость зерна.

Содержание азота в растениях

По химическому составу, на долю азота в растениях приходится 0,5-5,0% воздушно-сухой массы, основное количество приходится на семенах. Содержание белка четко коррелирует с количеством азота в растениях. В вегетативных органах содержание азота ниже: в соломе бобовых 1,0-1,4%, в соломе злаковых 0,45-0,65%. Еще меньше азота накапливается в корне-, клубнеплодах и овощных культурах: картофель (клубни) 0,32%, сахарная свекла (корни) 0,24%, капуста 0,33% сырого вещества.

Содержание азота в растениях зависит от возраста, почвенно-климатических условий, питательного режима, в частности обеспеченности питательными элементами.

Таблица. Содержание белка и азота в семенах различных культур, % 1

Культура Белок Азот
Соя 29 5,8
Горох 20 4,5
Пшеница 14 2,5
Рис 7 1,2

Содержание азота в молодых вегетативных органах выше. По мере старения азотистые вещества мигрируют в появляющиеся листья и побеги.

Таблица. Содержание азота в вегетативной массе зерновых культур по фазам развития, % на воздушно-сухое вещество 2

Культура Фаза развития
кущение трубкование колошение цветение
Озимая пшеница 5,0-5,4 3,0-4,5 2,1-2,5 2,0-2,4
Яровая пшеница 4,5-5,5 3,0-4,4 2,5-3,0 1,8-2,5
Овес 5,5-5,9 2,9-3,9 2,2 1,3-1,7

Поступление и трансформация азота в белковые вещества

Темпы накопления органических веществ растениями опережают поступление азота и других питательных веществ. Происходит «ростовое разбавление» содержания питательных элементов. При созревании отмечается выраженное передвижение азота в репродуктивные органы, где они накапливаются в виде запасных белков.

В основном азот поступает в растения в нитратной и аммонийно форме, но также способны усваивать некоторые растворимые органические соединения, например, мочевину, аминокислоты, аспарагин.

Из поступающих из почвы в растения соединений азота только аммиак непосредственно используется для синтеза аминокислот. Нитраты и нитриты включаются в синтез аминокислот только после восстановления в тканях растений.

Редукция нитратов до аммиака начинается уже в корнях с помощью флавиновых металлоферментов:

1 prevrashenie azota

При избытке, часть нитратов поступает в неизменном видо в листья, где восстанавливается по той же схеме.

Образование аминокислот (аминирование) происходит в результате взаимодействия аммиака с кетокислотами: пировиноградной, щавелевоуксусной, кетоглутаровой и др., образующиеся в процессе окисления углеводов. Аминирование регулируется ферментами. Так, при взаимодействии пировиноградной кислоты с аммиаком образуется аланин:

1 obrazovanie alanina

Аналогично взаимодействие аммиака с щавелевоуксусной кислотой приводит к образованию аспарагиновой кислоты (СООН-СН2-СНNН2-СООН), с кетоглутаровой кислотой — глутаминовая кислота (СООН-СН2-СН2-СНNН2-СООН).

В аминокислоты азот входит в виде аминогруппы (—NH2). Процессы образования аминокислот происходит в корнях и в надземной части растений.

Опыты с использованием меченых атомов показывают, что уже через несколько минут после подкормки растений аммиачными удобрениями, в тканях могут обнаруживаться аминокислоты, синтезированные из внесенного в подкормку аммиака. При этом первой образующеся аминокислотой является аланин, затем аспарагиновая и глутаминовая кислоты.

Нитратный азот может накапливаться в растениях в больших количествах, без причинения им вреда. Аммиак в свободном виде в тканях содержится в незначительных количествах. Его накопление, особенно при недостатке углеводов, приводит к аммиачному отравлению растений.

Однако растения имеют способность связывать избыток свободного аммиака: его часть вступает во взаимодействие с синтезированными аспарагиновой и глутаминовой аминокислотами, образуя соответствующие амиды — аспарагин и глутамин:

3 obrazovanie asparagina

4 obrazovanie glutamina

Образование аспарагина и глутамина позволяет растениям защитить себя от аммиачного отравления и создать резерв аммиака, кроме того, амиды участвуют в синтезе белков.

В 1937 г. биохимиками А.Е. Браунштейном и М.Г. Крицманом была открыта реакция переаминирования, заключающаяся в переносе аминогруппы с аминокислоты на кетокислоту с образованием других амино- и кетокислот. Реакция катализируется ферментами трансаминазами или аминоферазами.

Так, присоединение к пировиноградной кислоте аминной группы от глутаминовой кислоты, приводит к образованию аланина и кетоглутаровой кислоты:

5 obrazovanie alanina

Благодаря переаминированию синтезируется значительное число аминокислот. В растениях наиболее легко переаминируются глутаминовая и аспарагиновая кислоты.

Аминокислоты являются составными частями полипептидов и белков. В построении белковых молекул участвуют 20 аминокислот, аспарагин и глутамин в различных соотношениях и пространственной ориентации, что обуславливает огромное разнообразие белков. В настоящее время известно более 90 аминокислот, около 70 из них присутствуют в растениях в свободном виде и не входят в состав белков.

Растения синтезируют аминокислоты, которые не могут образовываться в организме человека и высших животных, но являются незаменимыми для их жизни. К ним относятся: лизин, гистидин, фенилаланин, триптофан, валин, лейцин, изолейцин, треонин и метионин.

На долю небелкового органического азота в растениях приходится 20-26% от общего количества. В неблагоприятных условиях, например, при дефиците калия или недостаточном освещении, количество небелковых азотистых соединений возрастает.

В тканях растений белки находятся в динамичном равновесии с небелковыми азотистыми соединениями. Одновременно с синтезом белков и аминокислот протекает процесс их распада: отщепление аминогруппы от аминокислоты с образованием кетокислот и аммиака. Этот процес называется дезаминированием. Высвобождающаяся кетокислота используется растениями для синтеза углеводов, жиров и иных веществ; аммиак повторно вступает в реакцию аминирования других кетокислот, образуя новые аминокислоты, при его избытке — аспарагин и глутамин.

Таким образом, весь цикл превращений азотистых соединений в растениях начинается (аминирование) и заканчивается (дезаминирование) аммиаком.

«Аммиак есть альфа и омега в обмене азотистых веществ у растений».

За все время вегетации растения синтезируется большое количество белковых соединений, причем в разные периоды роста обмен азотистых веществ происходит по-разному.

При прорастании семян, клубней, луковиц наблюдается распад запасных белков. Продукты распада расходуются на синтез аминокислот, амидов и белков в тканях проростков до выхода их на поверхность почвы. В Затем, по мере формирования корневой системы и листового аппарата, синтез белков протекает за счет минерального азота, поглощаемого из почвы.

В молодых растениях преобладает синтез белков. В процессе старения растений начинает преобладать распад белков. Продукты распада из стареющих органов мигрируют в молодые, интенсивно растущие органы, где используются для синтеза новых белков в точках роста. По мере созревания растений и формирования репродуктивных органов, белковых веществ распадаются в вегетативных частей, продукты распада перемещаются в репродуктивные органы, где используются для образования запасных белков. К этому моменту поступление азота в растения из почвы существенно замедляется или полностью прекращается.

Особенности аммонийного и нитратного питания растений

В конце XIX в. в агрономической науке ведущую роль занимала теория нитратного питания растений, роль аммиака как источника минерального питания отрицалась.

Причинами этому послужили:

Однако в конце века П.С. Коссович в опытах со стерильными культурами показал, что растения могут также усваивать аммиачный азот без окисления в нитратную форму. К такому же выводы пришел и французский исследователь Мазе в 1900 г. После этого были изучены условия и особенности питания аммонийными и нитратными формами азота. Фундаментальные исследования по этому вопросу провел Д.Н. Прянишников. Он показал, что эффективность использования различных форм азота зависит от реакция среды: в нейтральной реакции лучше поглощается аммонийный азот, при кислой — нитратный.

В начальные фазы роста существенное значение имеют биологические особенности. При прорастании семян с небольшим запасом углеводов, например, у сахарной свеклы, а, следовательно, органических кетокислот, избыточное поступление аммония в растения оказывает негативное действие. Аммонийный азот не успевает использоваться для синтеза аминокислот, накапливается в тканях растения и вызывает их отравление. В данном случае используют нитратные формы азотных удобрений, так как они также накапливаться в тканях растений, но не причиняют вреда. Семена и посевной материал с большим запасом углеводов, например, картофель, используют аммонийный азот для синтеза аминокислот без ограничений. Поэтому для таких культур аммонийная и нитратная формы в начальные стадии роста равноценны.

На поглощение нитратного и аммонийного азота влияет обеспеченность другими элементами питания. Повышенное содержание в почве калия, кальция и магния способствует поглощению аммония. При нитратном питании значение имеет обеспеченность растений фосфором и молибденом. Дефицит молибдена приводит к задержке восстановления нитратов до аммиака и способствует накоплению нитратов в тканях растений.

Учитывая, что аммонийная форма азота при поступлении в растения может сразу использоваться для синтеза аминокислот, тогда как нитратная только после восстановления до аммиака, аммоний более энергетически экономной формой.

Источник

Азот в жизни растений. Его роль, недостаток и способы восстановления

%D0%B0%D0%B7%D0%BE%D1%82 %D0%B2 %D0%B6%D0%B8%D0%B7%D0%BD%D0%B8 %D1%80%D0%B0%D1%81%D1%82%D0%B5%D0%BD%D0%B8%D0%B9

Один из важнейших макроэлементов. Без его участия невозможно развитие растений. Он отвечает за обмен веществ. При этом находится в составе всех белков, цитоплазмы, ядер клеток, аминокислот, хлорофилла, гормонов, витаминов и других соединений. Все это – азот.

%D0%B0%D0%B7%D0%BE%D1%82 1

Растениям он необходим постоянно, так как отвечает за все процессы питания. Поэтому его недостаток задевает жизненно важные функции.

Особенно нуждаются в этом элементе молодые растения во время активного роста стеблей и листьев. Они содержат наибольшее количество азота. Но с развитием, его доля снижается.

Роль азота в жизни растения заключается еще в том, что он больше других элементов влияет на качество и количество урожая. Поэтому, чтобы вырастить богатый урожай нужно с ранней весны позаботиться о достатке азота.

Азот в природе

%D0%B0%D0%B7%D0%BE%D1%82 2

Обе формы полезны при разных условиях: когда нужно быстро подкормить растение, используют нитраты. А когда необходимо поступление азота только на определенной фазе роста, вносят аммонийные удобрения.

Нитраты не задерживаются в почве и могут вымываться со склонов, выноситься с урожаем:

%D0%B0%D0%B7%D0%BE%D1%82 3

Азот атмосферы – это единственный природный источник азота. В газообразном состоянии находится в неограниченном количестве. Но его могут использовать лишь некоторые растения. Свойство переводить такой азот в форму, доступную для усвоения имеют азотфиксирующие бактерии. Такие бактерии находятся на корнях бобовых (соя, люцерна, клевер). Поэтому для природного восполнения уровня азота, их высаживают на местах, где в будущем будут произрастать культурные растения. И после уборки бобовых, азот остается в почве.

Азот в гидропонике

В питательном растворе для гидропоники важно наличие обеих форм азота. С помощью контроля их соотношения, можно добиться стабильного значения рН. Потому что, если раствор имеет только аммоний – это приведет к понижению уровня рН раствора и его подкислению. И наоборот – при перевесе нитратов, повысится рН вокруг корней и раствор станет щелочным. В этом случае, если значение рН не соответствует нужному уровню, растение перестанет получать необходимые элементы для нормального развития. При значении рН 6,8 растения одинаково усваивают обе формы азота.

При одинаковых пропорциях аммоний больше понижает рН раствора, чем нитратный азот повышает его. Поэтому для стабилизации уровня рН аммония используют намного меньше, чем нитратов (в соотношении 1:3).

Соотношение нитратов и аммония очень важно. Но оно может меняться в зависимости от сорта растения, температуры раствора, стадии роста, освещения:

    1. Если при образовании плодов у некоторых растений в питательном растворе присутствует аммоний – это снижает урожайность и может привести к заболеваниям. Поэтому лучше использовать аммоний только на начальной стадии развития. 2. При повышении температуры увеличивается потребление сахара и уменьшается обмен веществ аммония с ним. Поэтому при повышенных температурах недопустимо содержание высокого уровня аммония. 3. Наоборот, при низкой температуре нитраты транспортируются медленнее, поэтому использование их в растворе негативно сказывается на росте растения.

Нехватка азота у растений

Чтобы понять, как выглядит растение с недостатком азота N2 не нужно иметь специальных знаний. Главный признак – это прекращение роста и общая слабость. Растение с нормальным его содержанием выглядит здоровым, с насыщенным зеленым цветом листьев. Даже на начальной стадии азотное голодание может привести к потере половины урожая.

Недостаток азота у растений проявляет себя по таким признакам:

%D0%B0%D0%B7%D0%BE%D1%82 4

Как восполнить дефицит азота у растений

В почве

Азот для подкормки растений вносят в виде: калиевой, натриевой селитры, аммиачных, органических и других удобрений. Они повышают урожайность практически всех культур.

Почву удобряют ранней весной и в начале лета. За это время растение наиболее активно развивается. Своевременная подкормка стимулирует обмен веществ и активизирует рост.

Положительно удобрения влияют после весенних заморозков и понижений температуры. А вносить их после середины лета не рекомендуется. Это продлит рост, и существенно снизит зимостойкость растений. Также возможно накопление нитратов в плодах.

В гидропонике

Для гидропоники используют минеральные удобрения. Обычные органические удобрения (навоз) не используют, потому что они могут привести к загниванию. Это происходит из-за того, что органические удобрения расщепляются организмами, которые находятся только в почве. А удобрения для гидропоники содержат все готовые для использования элементы.

Раньше, чтобы получить питательный раствор, нужно было самому смешивать химические реактивы. Но это очень сложно. Сейчас раствор для гидропоники можно приготовить самому с помощью готовых удобрений:

%D0%B0%D0%B7%D0%BE%D1%82 5

Минеральное удобрение Plagron Hydro A/B 5 л. Двухкомпонентные азотсодержащие удобрения идеально подходят для профессионалов с большим опытом выращивания. Они содержат все необходимые питательные вещества даже для самых капризных растений. Используют эти подкормки во время развития, цветения и плодоношения. Они предназначены для гидропонного метода выращивания.

%D0%B0%D0%B7%D0%BE%D1%82 6

Стимулятор корнеобразования Plagron Power Roots 1 л. Это удобрение обеспечивает рост сильной, развитой корневой системы. В результате увеличивается усвоение питательных веществ, ускоряется рост молодых побегов. Используется во время вегетации и после пересадки для укрепления иммунитета. Подходит для любого способа выращивания.

%D0%B0%D0%B7%D0%BE%D1%82 7

Минеральное удобрение FloraGro 500 мл. Стимулирует активное развитие и укрепление корневой системы за счет обеспечения растения главными элементами. Используется на стадии вегетации для гидропонного способа, выращивания в почве, субстратах.

big

Для правильного развития растений в земле должны быть все необходимые микро- и макроэлементы в подходящих пропорциях.

big

big

Если из раза в раз сажать в почву те или иные культуры, не заботясь о поддержании плодородия грунта, уже очень скоро можно заметить, как стремительно падает урожайность.

big

Работа TDS метра основана на электропроводности водной – электроды, погруженные в водную среду, создают между собой электрическое поле. Чистая дистиллированная вода сама по себе ток не проводит, образуют его растворенные в воде различные примеси и соединения.

big

Солемер или TDS метр – это стационарный малогабаритный прибор для измерения жесткости воды и процентного содержания в ней разного вида веществ.

big

Кокосовый субстрат, изготавливаемый из растертой в мелкую крошку кожуры и волокон кокосового ореха, − достаточно молодой материал.

big

Чтобы пересаженные цветы хорошо росли и развивались, их корням необходима влага и возможность дышать через земляную почву. Обычная земляная смесь представляет собой достаточно плотную субстанцию, плохо пропускающую живительную влагу и воздух к корням.

big

Керамзитовый дренажный материал или керамзит – это одна из разновидностей субстрата применяемая для укоренения черенков роз гвоздик и иных цветочных растений.

Узнайте первым о предстоящих акциях и скидках. Мы не рассылаем спам и не передаем email третьим лицам

Источник

Азот – основа жизни

Азот – один из самых распространенных элементов на земле. Поскольку воздух на 78% состоит из этого газа, его часто называют главным элементом жизни.

Значение азота в природе

Азот встречается не только в газообразной форме. Это строительный материал, из которого состоят клетки растений. Он входит в состав протеинов, хлорофилла, ДНК, аминокислот. Без азота невозможен процесс фотосинтеза и обмена веществ. Поэтому он является ключевым элементом для нормального развития растений.

Азот в растении не находится статично в каком-то одном месте. Он перемещается в те его части, где необходим больше всего. При отмирании старых листьев, азот переходит в более молодые.

Недостаток этого элемента приводит к пожелтению и опаданию листвы. Сильное азотное голодание может привести к гибели растения. Хотя диагностировать эту проблему не сложно, важно сделать это как можно быстрее. Ведь нехватка азота способна значительно замедлить вегетативное развитие растения, нарушить формирование соцветий или плодов, а впоследствии заметно снизить урожай. По оценкам специалистов, азотное голодание может сократить урожайность примерно на 30%.

f6bde9dd1fbca12c22ecf768ad961fd0

Как растения могут испытывать нехватку азота, если он находится в воздухе вокруг них? Дело в том, что растения не могут усваивать азот непосредственно из атмосферы (кроме бобовых культур). Поэтому, чтобы восполнить его нехватку, приходится вносить специальные удобрения. При этом необходимо рассчитать, сколько азота понадобится растению во время каждой фазы роста, учесть тип и кислотность грунта, оптимальный способ и период внесения питательных веществ. Если ошибиться в этих расчетах, можно потратить азотные удобрения впустую, так как растение не сможет их усвоить должным образом.

Самые распространенные формы азота

Главную роль в процессе усвоения азота играет корневая система растения. Самые доступные для нее формы – аммоний (NH4), нитраты (NO3) и нитриты (NO2).

Аммоний – это так называемый «долгий» азот. Он надолго задерживается в почве и длительное время не вымывается водой. А нитриты и нитраты, наоборот, являются быстрорастворимыми солями, которые активно усваиваются растениями. Это так называемый «быстрый» азот, который усваивается растением в короткие сроки. Есть и минус – эти соединения так же быстро вымываются из грунта.

bc923e6b81d76639f9c3962129f7a3bd

Наличие разных форм азота удобно для управления азотным питанием растений. Так, для внесения срочной подкормки используется нитратный азот, а для подкормки, которая подействует позже, – аммонийный азот. Он начинает превращаться в нитраты примерно через месяц-полтора после внесения.

К примеру, озимую пшеницу подкармливают ранней весной с помощью нитратных форм азота. А вот под кукурузу предварительно вносят аммиачную форму азота. Ей важно получить азот во время фазы 3-4 листа. Чтобы азот не вымылся из почвы раньше времени, удобрения вносят вместе с ингибиторами уреазы, которые дополнительно замедляют процесс усвоения аммония.

Потери азота в почве

Кроме удобрений, азот попадает в почву с навозом и отмирающими растениями. Это медленно разлагающийся азот, который частично улетучивается, превращаясь в газообразную форму (аммиак).

Еще один источник аммония (NH4) – это карбамид, также называемый мочевиной. Он быстро вступает в реакцию с водой, превращаясь в NH4. При внесении карбамида важно, чтобы аммоний удержался частичками почвы. Для этого после его внесения производится обработка грунта. Если этого не сделать, аммоний в скором времени преобразуется в аммиак и улетучится в атмосферу.

Внесение удобрений возможно не только весной, но и осенью. При снижении температуры до +5°C, микроорганизмы останавливают активную деятельность, в результате чего аммоний остается в неизменной форме до весны, избегая потерь.

a341f1aec50e8424162f683eeb1ae293

Другой процесс, приводящий к потерям азота, называется выщелачиванием. Во время выщелачивания нитраты растворяются в воде и уходят вместе с ней в более глубокие слои почвы. Чем лучше почва поглощает воду, тем быстрее происходит выщелачивание. Поэтому на песчаных почвах потери нитратов больше, чем на глинистых.

Чтобы решить эту проблему, на почвах, которые легко пропускают воду, внесение азотных удобрений необходимо осуществлять перед самым посевом или в период активного роста растений, отдавая предпочтение внекорневой подкормке. Иначе выпадение обильных осадков на таких почвах может свести на нет все усилия по внесению своевременной подкормки, вымывая внесенные удобрения.

Кроме того, азот потребляется бактериями и микроорганизмами. Так, аэробные бактерии в процессе своей жизнедеятельности утилизируют кислород из нитрата NO3, преобразовывая азот в газообразную форму, которая быстро улетучивается в атмосферу. Этот процесс называется денитрификацией.

Особенности потребления азота растениями

Азот поглощается растением не только через корни, но и через листья. При этом основная часть питательных элементов все же усваивается через корневую систему, а внекорневая подкормка является скорее вспомогательным способом внесения азота.

Корни растений поглощают азот в виде аммония (NH4) и нитрата (NO3). То, в какой форме азот дойдет до растения, зависит от почвы: ее кислотности, способности пропускать воду, живущих в ней микроорганизмов. К примеру, при большом количестве аэробных бактерий, растения будут поглощать больше аммония. А деятельность нитрифицирующих бактерий, наоборот, приводит к большему содержанию нитратов. При низкой температуре азот может быть поглощен растениями даже в виде мочевины.

Разные культуры отдают предпочтение разным формам азота. К примеру, рис больше потребляет аммоний (NH4). Рапс и соя более требовательны к наличию серы, которая является синергистом азота. Поэтому, чтобы азот лучше усваивался этими культурами, необходимо больше внимания уделять содержанию в почве серы и при необходимости вносить ее дополнительно (например, в виде листовых подкормок сульфатом магния). А вот зерновые с одинаковым удовольствием поглощают все формы азота.

Зависимость растения от азота проявляется не сразу, а в период активного роста. К примеру, первичная корневая система пшеницы развивается за счет питательных веществ самого зерна. А вот через месяц, когда появляется вторичная корневая система, значение азота возрастает.

Если этот период сопровождается низкими температурами или засухой, растение испытывает сильный стресс, скорость его роста замедляется. Даже при достаточном количестве азота в почве, он не усваивается должным образом через корневую систему. Например, это явление заметно в период ночных похолоданий. В таком случае может понадобиться применение внекорневой (листовой) подкормки.

Азот, внесенный этим способом, впитывается листьями намного быстрее, чем при корневой подкормке. Но количество питательных элементов, которые растение может усвоить таким образом, ограниченно.

Чаще всего листовая подкормка проводится с помощью раствора карбамида. Мочевина не вызывает у растений стресса. При умеренном внесении она не вредит листьям, но при повышенных дозах могут быть ожоги, поэтому с карбамидом в таких случаях необходимо вносить сульфат магния. Также азот повышает качество семян, увеличивая в них содержание белков и клейковины.

Внесение карбамида часто сочетают с обработкой пестицидами, с подкормкой другими полезными элементами, например, серой и магнием. По сути, любая обработка растений может сочетаться с подкормкой мочевиной – достаточно добавить карбамид в рабочий раствор. Это снизит стресс, получаемый растением от химикатов, и увеличит пропускные свойства листьев, усиливая эффективность вносимых компонентов баковой смеси.

Именно дробное внесение азота является приоритетным и окажет наиболее ощутимый положительный эффект. Небольшие дозы азота, внесенные в ключевые фазы роста растения, обеспечат высокий урожай и минимизируют потери азота. На следующей схеме показано правильное распределение внесение азота для озимой пшеницы:

5e3a38897c162ed6274e8a27197a55ec

Для получения оптимального количества урожая важно правильно подобрать форму внесения удобрения. К примеру, вместо разбрасывания карбамида ранней весной, для озимой пшеницы более эффективной является внекорневая подкормка с помощью селитры или КАС.

Кроме формы внесения, важную роль играет правильно подобранный период времени. Основная цель – уловить время, когда растение возобновит весеннюю вегетацию и еще не начнет испытывать азотное голодание. Следование этому совету сведет к минимуму потери питательных веществ.

Если говорить о пшенице, внесение азота обязательно должно проводиться в фазе кущения.

Альтернативные источники азота

Внесение азотных удобрений – важная, но не дешевая процедура. Поэтому многие фермеры ищут альтернативные источники азота. Самый известный из таких способов – использование в севообороте бобовых культур.

В клубеньках, образующихся на корнях бобовых растений, обитают симбиотические азотфиксирующие бактерии. Эти микроорганизмы обладают уникальной способностью связывать молекулы азота из воздуха, используя их для образования аммиака и нитритов. Таким образом, они на 70-80% обеспечивают бобовые культуры необходимым азотом. После сбора урожая весь азот, который содержался в клубеньках, остается в почве, обогащая ее. Например, горох и соя оставляют после себя 50-90 кг азота на один гектар, и таким образом можно получить азотные удобрения буквально из воздуха.

f2c9902166142d25d3c60a57cfb13ba8

Еще один способ обеспечить растения дополнительным азотом – использовать севооборот культур с разной глубиной произрастания корневых систем. Нитратный азот, не усвоенный растениями с поверхностной корневой системой, вымывается в более глубокие слои почвы. Если посеять на следующий год культуры вроде свеклы или подсолнечника, эти растения смогут дотянуться до «утерянных» запасов азота.

В качестве удобрений можно и нужно использовать растительные остатки выращиваемых культур и отходы животного происхождения, если такие имеются в хозяйстве. Чем больше разнообразие используемых органических удобрений, тем лучше. Минерализуясь, они высвобождают питательные элементы, а также увеличивают содержание полезной микрофлоры в почве.

Источник

Читайте также:  Как сделать чтобы муж был счастлив в браке
Adblock
detector