- Вычисление суммы с конечным числом слагаемых и произведенияс конечным числом сомножителей
- Главная > Документ
- Умножение натуральных чисел
- Основные свойства умножения
- Законы умножения и их следствия
- Особые случаи умножения: умножение единицы и нуля
- Умножение однозначных чисел
- Умножение многозначного числа на однозначное
- Умножение в столбик многозначного числа на однозначное
- Умножение многозначных чисел
- Умножение на число, состоящее из единицы и любого количества нулей
- Умножение на число, которое начинается цифрами, и заканчивается любым количеством нулей
- Общее правило умножения чисел
- Умножение в столбик многозначных чисел
- Некоторые особенности записи умножения в столбик
- Изменение произведения чисел при изменении его сомножителей
- Умножение произведения на число и числа на произведение
- Распределительный закон умножения (умножение суммы на число)
- Произведение чисел х и у может быть получено как сумма состоящая из у слагаемых
- Когда произведение наибольшее?
Вычисление суммы с конечным числом слагаемых и произведенияс конечным числом сомножителей
Главная > Документ
Информация о документе | |
Дата добавления: | |
Размер: | |
Доступные форматы для скачивания: |
Вычисление суммы с конечным числом слагаемых и произведенияс конечным числом сомножителей
Очень часто встречаются задачи, связанные с вычислением суммы конечного числа слагаемых:
S = f 1 + f 2 + … + f n
Для обозначения этой суммы целесообразно использовать знак суммы . Тогда эту сумму можно будет записать в виде:
Пример 1. Cоставьте программу вычисления суммы.
.
Запишем эту сумму с помощью символа
. Имеем S =
.
REM Вычисление суммы
Пример 2. Составьте программу вычисления суммы.
Имеем
INPUT “Введите натуральное число N= ”; N
Пример 3. Cоставьте программу вычисления суммы.
Имеем S = 1+
REM Вычисление суммы
INPUT “Введите значение x = ”; x
Пример 4. Составьте программу вычисления суммы.
Замечание: Наиболее трудным моментом является вывод формулы общего члена, в данном случае это . Готовых рецептов здесь нет, прогресс будет очевидным по мере увеличения количества решенных задач.
INPUT “Введите число X = ” ; X
PRINT “S= ” ; S
Для вычисления произведения конечного числа сомножителей воспользуемся символом
Пример 5. Составьте программу вычисления произведения.
INPUT “Введите число х=”; х
Пример 6. Cоставьте программу вычисления N, где N- заданное натуральное число.
Имеем N =
INPUT “Введите натуральное число N= ”; N
Пример 7. Cоставьте программу вычисления S
P= 1*(1+2)*(1+2+3). (1+2+3+. +N), где N- заданное натуральное число.
P=
Умножение натуральных чисел
Я сперва покажу на примере, для чего нужно умножение, а после дам определение умножения и подробно расскажу об этом действии.
Допустим, мы хотим купить 14 тетрадей по 22 рубля каждая. Планируя покупку, нам нужно знать, сколько мы заплатим за всю покупку?
Чтобы ответить на этот вопрос, нам нужно сложить стоимость каждой тетради, которую мы хотим купить. А, так мы запланировали покупку 14 тетрадей, тогда мы складываем 22 рубля 14 раз, то есть, находим сумму 14 слагаемых, каждое из которых равно 22 :
22+22+22+22+22+22+22+22+22+22+22+22+22+22=308 (то есть, 308 рублей).
Если размер и количество одинаковых слагаемых небольшие, мы без особого труда можем найти их сумму. Но что же делать, если слагаемые многозначные и их количество велико?
Умножение – это арифметическое действие сложения определенного количества одинаковых слагаемых.
Действие умножение – это частный случай действия сложение.
Число, которое является повторяющимся слагаемым, называется множимое (то, что множится, умножается).
Число, которое указывает на количество одинаковых слагаемых, называется множитель.
Множимое и множитель имеют общее название – сомножители.
Результат действия умножения называется произведением.
22 ∙14=308,
22x14=308,
22*14=308.
При записи от руки действие умножение принято обозначать при помощи точки, косой крест используется в основном при печати, а звездочка – в компьютерном наборе. Но даже и во время компьютерного набора грамотнее использовать точку или косой крест (букву х).
Прочитать действие умножения и результат можно такими способами:
Компоненты действия умножение для двух сомножителей:
Компоненты умножения для трех сомножителей и более:
Основные свойства умножения
Поскольку действие умножение является частным случаем действия сложение, то основные свойства сложения распространяются и на умножение.
Законы умножения и их следствия
Умножение обладает такими основными свойствами, называемые законами умножения, из которых вытекают остальные свойства и следствия:
Переместительный закон умножения.
Произведение двух или нескольких сомножителей от изменения их порядка не меняется.
Это значит, что значение произведения не зависит от порядка перемножения сомножителей, то есть, от порядка выполнения действия умножение.
Для двух сомножителей мы можем записать переместительный закон умножения в общем виде так:
ab=ba.
Допустим, нам нужно подсчитать количество отделений в шкафу (рис. 1).
Это свойство также верно для трех и более сомножителей.
К примеру, нам нужно подсчитать количество отделений в двух одинаковых шкафах (рис. 2).
5 ∙3+5 ∙3 =5 ∙3 ∙2.
15+15=15 ∙2,
30=30.
3 ∙5+3 ∙5=3 ∙5 ∙2,
15+15=15 ∙2,
30=30.
Значит, 5 ∙3 ∙2=3 ∙5 ∙2=30.
Поэтому, для трех сомножителей переместительный закон умножения в общем виде выглядит так:
abc=acb=bac=bca=cab=cba.
Сочетательный закон умножения.
Результат умножения трех и более чисел не изменяется, если любые из этих сомножителей заменить их произведением.
Следовательно, мы можем группировать множители между собой каким угодно образом, и выполнять действие умножения с этими группами.
В общем виде для трех сомножителей сочетательный закон умножения можно выразить так:
abc=a(bc)=(ab)c=b(ac).
Этот закон можно назвать следствием переместительного закона умножения.
Так, при подсчете количества отделений в двух шкафах на рисунке 2, мы можем сперва найти число отделений в одном шкафу, а потом умножить результат на 2 :
(5 ∙3) ∙2=15 ∙2=30,
(3 ∙5) ∙2=15 ∙2=30,
а можем сперва найти общее количество рядов отделений в обоих шкафах, а после умножить их на количество отделений в ряду:
(3 ∙2) ∙5=6 ∙5=30.
Как видите, результат во всех случаях одинаковый.
Особые случаи умножения: умножение единицы и нуля
Если в произведении двух чисел один из сомножителей единица, то произведение равно второму сомножителю:
a ∙1=1 ∙a=a.
А при умножении единицы на любое число (например, 1 ∙ 7 ) мы находим сумму семи единиц, то есть, то количество единиц, из которых состоит данное число. Следовательно, сумма этих единиц равна самому данному числу :
1+1+1+1+1+1+1=7.
Если в произведении любого количества сомножителей одним из сомножителей является нуль, то и произведение равно нулю:
a∙b∙0=0∙a∙b=a∙∙c=0.
Умножение однозначных чисел
Умножение двух однозначных натуральных чисел a и b – это нахождения суммы b слагаемых, каждое из которых равно числу a, и при этом a и b являются натуральными числами.
Для облегчения вычисления, были посчитаны результаты умножения всех однозначных чисел друг на друга, и сведены в специальные таблицы умножения.
Умножение многозначного числа на однозначное
900+80+5+900+80+5+900+80+5+900+80+5.
Воспользуемся законами сложения и сгруппируем одинаковые слагаемые этого выражения вместе:
900+900+900+900+80+80+80+80+5+5+5+5,
(900+900+900+900)+(80+80+80+80)+(5+5+5+5).
Суммы в скобках мы можем заменить на произведение одинаковых слагаемых и числа этих слагаемых в каждых скобках:
900 ∙4+80 ∙4+5 ∙4.
Таким образом, чтобы умножить многозначное число на однозначное, достаточно умножить это однозначное число на количество единиц в каждом разряде многозначного числа, и сложить полученные результаты.
Умножение в столбик многозначного числа на однозначное
4 раза по 8 десятков – это 32 десятка. Прибавим к ним 2 десятка, которые получились после умножения однозначного числа на единицы, получим 32 десятка, то есть, 3 сотни и 2 десятка. Цифру 2 пишем под чертой в разряде десятков, а над разрядом сотен множимого 975 (в уме) ставим маленькую цифру 3 :
4 раза по 9 сотен – это 36 сотен. Прибавим к ним 3 сотни, которые держим в уме, получаем 39 сотен, или 3 тысячи и 9 сотен. Значит, пишем под горизонтальной чертой в разряде сотен цифру 9 и, поскольку в множимом 985 нет ни одной тысячи, то сразу запишем в результате под чертой цифру 3 в разряде тысяч:
Умножение многозначных чисел
Прежде чем рассказать, как в общем случае умножить одно многозначное число на другое, я расскажу о двух частных случаях умножения многозначных чисел:
Умножение на число, состоящее из единицы и любого количества нулей
327 ∙10 =3270
327 ∙100 =32700
Итак, чтобы умножить какое-нибудь число на другое, которое начинается на единицу, и заканчивается любым количеством нулей, достаточно к концу первого числа дописать столько нулей, сколько содержится во втором числе.
Умножение на число, которое начинается цифрами, и заканчивается любым количеством нулей
327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327.
(327+327)+(327+327)+ (327+327)+(327+327)+ (327+327)+(327+327)+ (327+327)+(327+327)+ (327+327)+(327+327).
(327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2).
(327 ∙2) ∙10.
764 ∙3 =2292.
2292 ∙100 =229200.
Итак, чтобы умножить какое-нибудь число на другое, начинающееся любыми цифрами и заканчивающееся нулями, достаточно умножить первое число на число, образованное первыми цифрами второго, а к результату приписать справа столько нулей, сколько их было в конце второго числа.
Иными словами: нужно от второго числа отбросить нули в конце, умножить получившиеся числа, а к результату приписать справа столько нулей, сколько изначально отбросили.
Общее правило умножения чисел
Количество слагаемых ( 168 ) мы можем разложить на разрядные слагаемые ( 100+60+8 ) и согласно сочетательному закону сложения сгруппировать их следующим образом : сто слагаемых плюс шестьдесят слагаемых плюс восемь слагаемых.
Исходя из определения умножения, выражения в скобках мы можем представить не в виде суммы большого количества слагаемых, а как сумму произведений:
Таким образом, чтобы умножить два многозначных числа, достаточно последовательно умножить одно из этих чисел на количество единиц каждого из разрядов второго числа, и сложить полученные результаты.
Частное произведение – это число, полученное после умножения одного из сомножителей на количество единиц какого-либо разряда другого сомножителя.
Умножение в столбик многозначных чисел
При записи действия умножения в столбик сомножители располагаются друг под другом таким образом, чтобы совпадали соответствующие разряды обоих чисел ; под множителем проводим горизонтальную черту, и ставим между сомножителями знак действия умножения:
В частных произведениях обычно не пишут (опускают) нули в конце числа для упрощения записи. При этом следует не забывать, что, первую полученную цифру частного произведения нужно писать в том разряде, цифру которого мы умножаем на множимое.
Некоторые особенности записи умножения в столбик
При записи нахождения произведения двух чисел в столбик существуют некоторые особенности, которые помогают сократить запись и упростить наглядность вычисления. Все они являются следствием свойств умножения.
Попробуйте самостоятельно доказать справедливость этого утверждения. Пишите в комментариях, получилось ли это у вас или нет.
Изменение произведения чисел при изменении его сомножителей
Если увеличить один из сомножителей в несколько раз, произведение также увеличится в это же число раз.
18 ∙2 =36
18 ∙6 =108.
По-другому и быть не может, и вот почему.
Первое произведение представляет собой сумму двух слагаемых :
18+18.
Второе произведение – это сумма шести таких же слагаемых :
18+18+18+18+18+18.
(18+18)+(18+18)+(18+18).
Если уменьшить один из сомножителей в несколько раз, произведение также уменьшится в это же число раз.
Попробуйте самостоятельно доказать правильность этого свойства. Пишите в комментариях, получилось ли это у вас?
Если увеличить один из сомножителей в несколько раз, а второй в это же число раз уменьшить, то произведение при этом не поменяется.
32 ∙8 =256,
Увеличим первый сомножитель в 4 раза, а второй во столько же раз уменьшим:
128 ∙2 =256.
Теперь уменьшим первый сомножитель произведения 32 ∙8 в 4 раза, а второй уменьшим в это же число раз:
8 ∙32 =256.
Умножение произведения на число и числа на произведение
Если необходимо умножить произведение на число, нужно любой сомножитель этого произведения умножить на данное число, а результат умножить последовательно на оставшиеся сомножители.
(a ∙b ∙c) ∙d =(a ∙d) ∙b ∙c =(b ∙d) ∙a ∙c =(c ∙d) ∙a ∙b
10 ∙7 =70 (просто приписываем к семерке нуль),
70 ∙9 =630 (находим по таблице умножения 7 ∙9 =63 и приписываем в конце нуль).
Когда я пишу «находим по таблице умножения», это означает, что мы вспоминаем эту строку из таблицы, а не ищем её там на самом деле. Таблицу умножения нужно знать наизусть!
Если необходимо умножить число на произведение, нужно умножить данное число на любой сомножитель, а результат умножить на оставшиеся сомножители.
a ∙(b ∙c ∙d) =(a ∙b) ∙c ∙d =(a ∙c) ∙b ∙d =(a ∙d) ∙b ∙c.
30 ∙3 =90,
90 ∙2 =180.
Распределительный закон умножения (умножение суммы на число)
Когда мы рассматривали умножение многозначного и однозначного чисел, мы раскладывали число 975 на его разрядные слагаемые ( 900+70+5 ), а потом умножали на 4 отдельно каждое это слагаемое. Аналогично можно поступать при умножении числа на любую сумму.
(5+2+4+9)+(5+2+4+9)+ (5+2+4+9).
Все эти слагаемые представляют собой одну сумму чисел, сгруппированных в определенные группы. Запишем их без скобок:
5+2+4+9+5+2+4+9+5+2+4+9,
а затем, используя переместительный и сочетательный законы сложения, сгруппируем одинаковые слагаемые:
Основываясь на определении действия умножение, так как мы имеем в каждых скобках одинаковые слагаемые, переписываем это выражение следующим образом:
5 ∙3+2 ∙3+4 ∙3+9 ∙3.
Распределительный закон умножения: для умножения суммы на любое число, необходимо каждое слагаемое этой суммы умножить на данное число, а затем сложить полученные произведения.
Согласно переместительному закону умножения, это свойство справедливо и при умножении числа на сумму.
Для умножения числа на сумму, необходимо умножить данное число на каждое слагаемое этой суммы, а результаты полученных произведения сложить.
(a+b+c+d)∙z =z∙(a+b+c+d) =a ∙z+b ∙z+c ∙z+d ∙z.
Название распределительный происходит от того, что действие умножения на сумму распределяется между каждым из слагаемых этой суммы.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 5 / 5. Количество оценок: 1
Оценок пока нет. Поставьте оценку первым.
Так как вы нашли эту публикацию полезной.
Подписывайтесь на нас в соцсетях!
Сожалеем, что вы поставили низкую оценку!
Позвольте нам стать лучше!
Расскажите, как нам стать лучше? Отправить отзыв
Произведение чисел х и у может быть получено как сумма состоящая из у слагаемых
Когда произведение наибольшее?
Для решения многих задач «на максимум и минимум», т. е. на разыскание наибольшего и наименьшего значений переменной величины, можно успешно пользоваться одной алгебраической теоремой, с которой мы сейчас познакомимся. Рассмотрим следующую задачу:
На какие две части надо разбить данное число, чтобы произведение их было наибольшим?
Пусть данное число а. Тогда части, на которые разбито число а, можно обозначить через
число х показывает, на какую величину эти части отличаются от половины числа а. Произведение обеих частей равно
Ясно, что произведение взятых частей будет увеличиваться при уменьшении х, т. е. при уменьшении разности между этими частями. Наибольшим произведение будет при x = 0, т. е. в случае, когда обе части равны a/2.
Итак, число надо разделить пополам: произведение двух чисел, сумма которых неизменна, будет наибольшим тогда, когда эти числа равны между собой.
Рассмотрим тот же вопрос для трех чисел.
На какие три части надо разбить данное число, чтобы произведение их было наибольшим?
При решении этой задачи будем опираться на предыдущую.
Пусть число а разбито на три части. Предположим сначала, что ни одна из частей не равна a/3.Тогда среди них найдется часть, большая a/3 (все три не могут быть меньше a/3); обозначим ее через
Точно так же среди них найдется часть, меньшая a/3; обозначим ее через
Числа х и у положительны. Третья часть будет, очевидно, равна
больше, чем произведение первых двух частей числа а.
Итак, если первые две части числа а заменить числами
а третью оставить без изменения, то произведение увеличится.
Пусть теперь одна из частей уже равна a/3. Тогда две другие имеют вид
Если мы эти две последние части сделаем равными a/3 (отчего сумма их не изменится), то произведение снова увеличится и станет равным
Итак, если число а разбито на 3 части, не равные между собой, то произведение этих частей меньше чем а 3 /27, т. е. чем произведение трех равных сомножителей, в сумме составляющих а.
Подобным же образом можно доказать эту теорему и для четырех множителей, для пяти и т. д.
Рассмотрим теперь более общий случай.
Найти, при каких значениях х и y выражение х p у q наибольшее, если х + y = а.
Надо найти, при каком значении х выражение
достигает наибольшей величины.
которое, очевидно, достигает наибольшей величины тогда же, когда и первоначальное.
Представим полученное сейчас выражение в виде
Сумма всех множителей этого выражения равна
т. е. величине постоянной.
На основании ранее доказанного заключаем, что произведение
достигает максимума при равенстве всех его отдельных множителей, т. е. когда
Итак, произведение х p y q при постоянстве суммы х + у достигает наибольшей величины тогда, когда
Таким же образом можно доказать, что произведения
при постоянстве сумм x + y + z, x + y + z + t и т. д. достигают наибольшей величины тогда, когда